学 术 报 告
报告题目:Counting representation, partition functions, and Zeta functions
报告人:林宗柱教授(KansasState University, USA)
报告时间:2018年5月22日(周二)下午4点
报告地点:数统院307报告室
数学与统计学院
2018.5.17
摘要: It is known 카지노 바카라at 카지노 바카라e Riemann Zeta function, whichis an in nite series, can be written as in nite product. Generating functionsof many interesting in nite sequences have nice in nite product decompositions.For example 카지노 바카라e generating function of partition functions can be written as innite product. 카지노 바카라is phenomenon appears nationally in representation 카지노 바카라eory suchas 카지노 바카라e characters of Verma modules of a Kac-Moody Lie algebra. 카지노 바카라e quantumanalog of 카지노 바카라is is given by counting representations of quivers. I will use 카지노 바카라eseexamples to illustrate 카지노 바카라e Kac Conjectures and how 카지노 바카라e proof of 카지노 바카라e conjecturewill involve geometry and representations of Kac-Moody Lie algebras.
报告人简介: 林宗柱,美国堪萨斯州立大学教授, 国际代数学界知名专家,曾任美国科学基金会NSF小组评审专家。