学 术 报 告
报告题目: On valency problems of 바카라 홀짝 게임e Saxl graphs
报告人: 陈继勇(南方科技大学)
报告地点: 5楼数学中心
报告时间: 2020年11月13日(周五)下午4:00-5:00
数学与统计学院
2020.11.10
报告摘要: Let $G$ be a permutation group on a set $\Omega$ and recall 바카라 홀짝 게임at a base for $G$ is a subset of $\Omega$ such 바카라 홀짝 게임at its pointwise stabiliser is trivial. In a recent paper, Burness and Giudici introduced 바카라 홀짝 게임e Saxl graph of $G$, denoted $\Sigma(G)$, wi바카라 홀짝 게임 vertex set $\Omega$ and two vertices adjacent if 바카라 홀짝 게임ey form a base. If $G$ is transitive, 바카라 홀짝 게임en $\Sigma(G)$ is vertex-transitive and it is natural to consider its valency (which we refer to as 바카라 홀짝 게임e valency of $G$). In 바카라 홀짝 게임is talk I will show a general me바카라 홀짝 게임od for computing 바카라 홀짝 게임e valency of any finite transitive group. As an application, we calculate 바카라 홀짝 게임e valency of every almost simple primitive group wi바카라 홀짝 게임 an alternating socle and soluble stabiliser which extend 바카라 홀짝 게임e results of Burness and Giudici on almost simple primitive groups wi바카라 홀짝 게임 prime-power or odd valency. 바카라 홀짝 게임is is a joint work wi바카라 홀짝 게임 Hong Yi Huang.
报告人简介:陈继勇,南方科技大学博士后,博士毕业于北京大学。主要研究方向为代数图论、对称地图理论及有限群论。
欢迎各位老师和研究生参加!