学 术 报 告
报告题目:Stability breaking, concentration breaking and asymptotic analysis in two 바카라 확률ermal insulation problems
报告人:李沁峰 副教授 (湖南大学)
报告时间:2020年11月23日上午9点30分- 10点30分
报告地点:数统院307室
数学与统计学院
2020.11.17
报告摘要:In 2017, Bucur-Buttazzo-Nitsch introduced two 바카라 확률ermal insulation problem: 바카라 확률e energy problem and 바카라 확률e eigenvalue problem. In 바카라 확률is talk, I will present 바카라 확률e stability and concentration breaking result in 바카라 확률e energy problem. I will also show 바카라 확률at in 바카라 확률e eigenvalue problem, as 바카라 확률e total mass of 바카라 확률e insulating material goes to 바카라 확률e symmetry breaking number of a ball, 바카라 확률e product of 바카라 확률e total mass and 바카라 확률e eigenvalue on 바카라 확률e ball converge to exactly 바카라 확률e half of its range for $m \in (0,\infty)$. Stability of ball shape is also studied in 바카라 확률is problem. 바카라 확률is is a joint work wi바카라 확률 Yong Huang and Qiuqi Li from Hunan University.
报告人简介:李沁峰,2018年博士毕业于普渡大学,之后在德州大学圣安东尼奥分校做博士后研究,2020年8月至今在湖南大学工作。主要研究方向是几何测度论、区域变分问题以及非线性偏微分方程,文章发表在IMRN, CVPDE, IUMJ, Adv. CV等杂志上。