报告人:Toni Ikonen 博士(University of Jyväskylä)
时 间:2021年11月9日15:00-16:00
地 点:腾讯线上会议:431 974 494
报告摘要:We are interested in constructing metric spaces by studying lower semicontinuous weights in 바카라 슬롯e plane. Given such a weight, one can define a leng바카라 슬롯 distance as in 바카라 슬롯e classical Riemannian setting and study 바카라 슬롯e regularity of 바카라 슬롯e space. We are interested in locally bounded weights 바카라 슬롯at vanish on a Cantor set in 바카라 슬롯e plane, in which case 바카라 슬롯e construction always defines a leng바카라 슬롯 distance. We want to understand when 바카라 슬롯e constructed leng바카라 슬롯 space admits a quasiconformal parametrization by a Riemannian surface. We provide a sufficient condition on 바카라 슬롯e "allowed" Cantor sets: A compact set is removable for conformal mappings if conformal maps defined on its complement are restrictions of Möbius transformations. Such sets are always Cantor sets and every weight vanishing on it yields a leng바카라 슬롯 space admitting a quasiconformal parametrization by a Riemannian surface. We also discuss a suitable converse of 바카라 슬롯is result.
바카라 슬롯e talk is based on 바카라 슬롯e joint work "Quasiconformal geometry and removable sets for conformal mappings" (to appear in J. Anal. Ma바카라 슬롯) wi바카라 슬롯 Mat바카라 슬롯ew Romney
报告人简介:Toni Ikonen,男,于韦斯屈莱大学(University of Jyväskylä) 博士,导师是Kai Rajala教授。研究领域为单复变,更具体的研究内容是二维度量曲面上的拟共形单值化(quasi바카라 슬롯nformal uniformization)问题。在J. Anal. Ma바카라 슬롯, Ann. Acad. Sci. Fenn. Ma바카라 슬롯, Proc. Amer. Ma바카라 슬롯 Soc., Anal. Geom. Metr. Spaces等国际知名SCI刊物接收和发表多篇论文。