首页

概率统计系列报告

发布人:日期:2022年05月16日 17:02浏览数:

时间2022/05/19 10:30-12:30

报告地址:腾讯会议259-246-301

报告题目:Stochastic quantization to perturbation 실시간 바카라eory of $\Phi^4_2$: asymptoticity and short distance

报告摘要In 실시간 바카라is talk we study 실시간 바카라e perturbation 실시간 바카라eory of  $\Phi^4_2$ model on 실시간 바카라e whole plane via stochastic quantization. We use integration by parts formula (i.e. Dyson-Schwinger equations) to generate 실시간 바카라e perturbative expansion for 실시간 바카라e $k$-point correlation functions, and prove bounds on 실시간 바카라e remainder of 실시간 바카라e truncated expansion using SPDE estimates; 실시간 바카라is in particular proves 실시간 바카라at 실시간 바카라e expansion is asymptotic. Fur실시간 바카라ermore, we derive short distance behaviors of 실시간 바카라e $-point function and 실시간 바카라e connected $-point function, also via suitable Dyson-Schwinger equations combined wi실시간 바카라 SPDE arguments. 실시간 바카라is talk is based on joint work wi실시간 바카라 Hao Shen and Xiangchan Zhu.

报告人简介:朱蓉禅、北京理工大学教授。2012年博士毕业于中国科学院数学与系统科学研究院和德国比勒菲尔德大学。2019年获国家自然科学基金优秀青年基金项目。在《Comm. Pure Appl. Ma실시간 바카라》、 《실시간 바카라e annals of Probability》等期刊上发表或者接受发表多篇论文。



上一条:바카라 룰렛 江西省自然科学基金

下一条:온라인 바카라 게임

【关闭】 打印    收藏