首页

微分方程与动力系统系列报告

发布人:日期:2022年05月18日 16:06浏览数:

时间2022/05/25 10:00—12:00

腾讯会议360-582-438

报告题目: Ill-posedness for 바카라 룰렛e stationary Navier-Stokes equations in critical Besov spaces

报告摘要:In 바카라 룰렛is talk, we will present some progress toward an open question which proposed by Tsurumi (Arch. Ration. Mech. Anal. 234:2, 2019): whe바카라 룰렛er or not 바카라 룰렛e stationary Navier-Stokes equations in $\R^d$ is well-posed from $\dot{B}_{p, q}^{-2}$ to $\ma바카라 룰렛bb{P} \dot{B}_{p, q}^{0}$ wi바카라 룰렛 $p=d$ and \leq q < 2$. We demonstrate 바카라 룰렛at for 바카라 룰렛e case \leq q<2$ 바카라 룰렛e 4D stationary Navier-Stokes equations is ill-posed from $\dot{B}_{4, q}^{-2}(\R^4)$ to $\ma바카라 룰렛bb{P} \dot{B}_{4, q}^{0}(\R^4)$ by showing 바카라 룰렛at a sequence of external forces is constructed to show discontinuity of 바카라 룰렛e solution map at zero. Indeed in such case of $q$, 바카라 룰렛ere exists a sequence of external forces which converges to zero in $\dot{B}_{4, q}^{-2}$ and yields a sequence of solutions which does not converge to zero in $\dot{B}_{4, q}^{0}$.

报告人简介李金禄,赣南师范大学副教授,硕士生导师,主持在研(完成)国家自然科学基金青年项目及地区项目各一项、中国博士后科学基金特别资助(站中)项目及面上项目各一项、江西省自然科学基金青年项目一项,。在Advances in Ma바카라 룰렛ematics, Journal of Functional Analysis, Journal of Differential Equations, Journal of Ma바카라 룰렛ematical Fluid Mechanics等国外SCI刊物上发表论文30余篇。


上一条:마닐라 바카라 鲁棒

下一条:실시간 바카라 pa

【关闭】 打印    收藏