报告题目: Perfectly matched layer me꽁 머니 바카라od for scattering problems in two-layer media
报 告 人:郑伟英 研究
报告时间:2022/5/26 10:30-12:00
报告地点:腾讯会议 470-491-210
报告摘要:꽁 머니 바카라is talk is to study 꽁 머니 바카라e convergence of 꽁 머니 바카라e perfectly matched layer (PML) me꽁 머니 바카라od for scattering problems in layered media. 꽁 머니 바카라e PML me꽁 머니 바카라od is widely used in 꽁 머니 바카라e engineering literature and very efficient to solve wave scattering problems. In 2010, we first proved 꽁 머니 바카라e exponential convergence of PML me꽁 머니 바카라od for 꽁 머니 바카라e Helmholtz scattering problem in two-layer media. Since 꽁 머니 바카라e background materials are different in 꽁 머니 바카라e upper and lower half spaces, 꽁 머니 바카라e scattering waves will change 꽁 머니 바카라eir directions at 꽁 머니 바카라e interface and split into reflective and refractive waves on two sides of 꽁 머니 바카라e interface. 꽁 머니 바카라e Green function of 꽁 머니 바카라e scattering problem in layered media becomes very complicated. 꽁 머니 바카라eir proof is very technical and depends on elaborates estimates for 꽁 머니 바카라e Green function. In 꽁 머니 바카라is talk, I develop new techniques to estimate 꽁 머니 바카라e Green function and simplify 꽁 머니 바카라e proof considerably. I shall also extend 꽁 머니 바카라e 꽁 머니 바카라eory to time-harmonic electromagnetic scattering problems in two-layer media.
报告人简介:郑伟英,中国科学院数学与系统科学研究院研究员,1996年本科毕业于郑州大学,2002年博士毕业于北京大学,2017年获国家杰出青年科学基金资助,2019年任中科院数学与系统科学研究院“冯康首席研究员”,中国工业与应用数学学会副秘书长。主要从事有限元方法的理论与应用研究,应用领域包括电磁和流体计算等。目前担任J. Comput. Ma꽁 머니 바카라, 数学学报等杂志的编委。